On Mean Ergodic Convergence in the Calkin Algebras

نویسنده

  • WILLIAM B. JOHNSON
چکیده

In this paper, we give a geometric characterization of mean ergodic convergence in the Calkin algebras for Banach spaces that have the bounded compact approximation property.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Individual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state

The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing  m-almost everywhere convergence, where  m...

متن کامل

Non-linear ergodic theorems in complete non-positive curvature metric spaces

Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...

متن کامل

On Ergodic Properties of Convolution Operators Associated with Compact Quantum Groups

Recent results of M. Junge and Q.Xu on the ergodic properties of the averages of kernels in noncommutative L-spaces are applied to the analysis of the almost uniform convergence of operators induced by the convolutions on compact quantum groups. The classical ergodic theory was initially concerned with investigating the limits of iterations (or iterated averages) of certain transformations of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013